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Scale-free multicomponent growing networks
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~Received 18 November 2003; published 16 March 2004!

We propose a multicomponent growing network model which consists of many types of nodes as well as
links only between the nodes of different types. Such a multicomponent network is constructed by~i! intro-
ducing a new node of one type and immediately linking it to a preexisting node of the other type, and~ii !
creating a new link between two nodes of different types. We then investigate the connectivity of the multi-
component growing networks by means of the rate equations. For a network system with shifted or asymp-
totically linear connection rate kernels, the degree distributions take scale-free power-law forms, while a
random growing network has exponential degree distributions.
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In the last few years, complex networks which play
important role in many natural and social fields@1–5# have
attracted considerable interest. In terms of random grap
network consists of nodes and links, where the nodes re
sent the individuals and the links represent the interacti
between two different individuals. Most interestingly, ma
real-world complex networks are of scale-free degree dis
butions and small-world properties@6–9#. In particular, re-
cent researches exhibited that for a wide variety of op
evolving network systems, such as the World Wide Web,
electrical distribution system, and the biological system,
degree distributions take a power-law form@10–16#. In order
to mimic such networks with complex topology, Baraba´si
and Albert introduced a simple growing network~GN! model
~well known as the BA model! in which new nodes are con
tinuously added to the network and meanwhile, they att
preferentially to the old nodes that are already well co
nected@7#. Some modified versions of the BA model~e.g.,
by introducing the initial attractiveness and aging of nod!
were also investigated carefully@11,17#. However, most of
these investigations focused on the single-component
works that comprise a sole type of nodes, and only a
works devoted their efforts to understanding the multico
ponent network models@14–16#. In fact, for some real net
work systems there may exist different types of nodes
different component nodes may have distinct properties.
example, in the web of human sexual contacts@4#, there are
two kinds of individuals, males and females; moreover,
common sexual partners of males are the females, andvice
versa.

In this work, we shall construct a multicomponent gro
ing network on the basis of the network models proposed
Refs. @13,15#. Assume that there areL types of nodes, de
noted asAl ( l 51,2, . . . ,L), in a multicomponent network
At each time step, a new link is added to the network in o
of the two ways: with probabilityq a new link is created
between two already existing nodes of different types,
with probability pl a new node of typeAl is added to the
network and immediately attached to an already exist
node of any other typeAm ( l ,m51,2, . . . ,L andmÞ l ). Ob-
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viously, q1( l 51
L pl51. Here we only consider the model i

which the links among the same type of nodes are forbidd
In some other situations, it may be more sound that the li
between two nodes of the same type are also permis
@14,15#. We believe that our model may mimic some rea
world complex systems such as the above-mentioned hu
sexual contact web.

By employing the standard probabilistic method or gen
ating function technique one may readily solve such a gro
ing network model~see, e.g., Refs.@1,18#!. Additionally,
Krapivsky et al. introduced another simpler but useful ra
equation approach@12,13#, which can be used to study mor
general evolving graph systems. Here we also investigate
evolution properties of the multicomponent GN model
means of the rate equations. Let the number of theAl type
nodes withk links beNlk ( l 51,2, . . . ,L). Then the degree
distributionNlk(t) evolves according to the rate equation

dNlk

dt
5 (

m51

L

pm

Wk21
( l ;m)Nl ,k212Wk

( l ;m)Nlk

(
l 51

L

(
k

Wk
( l ;m)Nlk

1q

(
1<m<L

(
k8

Nmk8@Vk21,k8
( l ;m) Nl ,k212Vkk8

( l ;m)Nlk#

1

2 (
l ,m51

L

(
k,k8

Vkk8
( l ;m)Nmk8Nlk

1pldk1 , l 51,2, . . . ,L, ~1!

with the boundary conditionNl0(t)[0. HereWk
( l ;m) repre-

sents the preferential connection rate at which a newly in
duced node of typeAm is linked to a preexisting~i.e., old! Al

type node withk links andVk;k8
( l ;m) denotes the connection rat

of a new link created between an oldAl type node withk
links and an oldAm type node withk8 links. It follows from
the connection restriction of our network model thatWk

( l ; l )

[0 and Vk;k8
( l ; l )[0 for all k and k8. In Eq. ~1!, the term,

pmWk21
( l ;m)Nl ,k21 /( l 51

L (kWk
( l ;m)Nlk , on the right-hand side

accounts for the gain in the number of theAl type nodes with
k links due to the process in which a newly introduced no
of type Am is connected to an oldAl type node withk21
©2004 The American Physical Society01-1
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links (l ,m51,2, . . . ,L and lÞm); while the term,
pmWk

( l ;m)Nlk /( l 51
L (kWk

( l ;m)Nlk , accounts for the loss inNlk

due to the newAm type node attached to an oldAl type node
with k links. The denominator,( l 51

L (kWk
( l ;m)Nlk , is the ap-

propriate normalization factor. Similarly, the second group
terms accounts for the changes caused by the creation
new link between an oldAl type node withk21 ~or k) links
and an old node of typeAm (mÞ l ). The last term account
for the continuous introduction of new nodes.

Summing up Eq.~1! over all k, we obtain the evolution
equations of the total number of the same type of nod
Ṁ0

( l )5(kṄlk5pl , which yield the solutionsM0
( l )(t)5plt

1M0
( l )(0), l 51,2, . . . ,L. Obviously, the total number o

nodes of the same type increases at a fixed rate indepen
of the connection rate kernelsWk

( l ;m) andVkk8
( l ;m) . Moreover,

multiplying Eq. ~1! with k and summing them up, one ca
then find that the first moment of the degree distributio
obeys Ṁ15( l 51

L (kkṄlk52. The solution of the first mo-
ment is readily obtained,M1(t)52t1M1(0). This shows
that the total number of the links among the nodes of diff
ent type is also independent of the connection rate kern
Except for the total number of nodes and the total numbe
links, the degree distributions as well as their higher m
ments may be crucially dependent on the connection kern

For a network model in which all the connection rat
(Wk

( l ;m) andVkk8
( l ;m) , l ,m51,2, . . . ,L) are sublinear or linea

in k andk8, we can conclude, according to the compreh
sive results of Ref.@12#, that the solutions of Eq.~1! take the
following forms at large times:

Nlk~ t !5nlkt, l 51,2, . . . ,L, ~2!

wherenlk are independent of timet. In the context of this
text,nlk is also called the degree distribution of nodes of ty
Al ( l 51,2, . . . ,L). Otherwise, if at least one of the conne
tion rate kernels is superlinear, the phenomenon that a si
dominant gel node is linked to almost all nodes of oth
types will also arise in our multicomponent GN model. Th
is the so-called ‘‘winner takes all’’ phenomenon@12#. Thus,
all the connection rate kernels should be known in de
before one can derive the analytical solutions of the deg
distributions from Eq.~1!. In this work, we only focus on the
multicomponent networks with linear or sublinear conne
tion kernels. Such networks may exhibit the scale-free pr
erties of the degree distributions and are therefore expe
to mimic some real-world systems.

Consider a model with linear or sublinear connection k
nels. Thus, the long-time degree distributions evolve acco
ing to the forms~2!. Consequently, in the long-time limit,

(
l 51

L

(
k

Wk
( l ;m)Nlk~ t !5wmt,

(
l ,m51

L

(
k,k8

Vkk8
(m; l )

@Nlk~ t !Nmk8~ t !#5vt2, m51,2, . . . ,L,

~3!
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wherewl andv are independent of time and dependent o
on the connection rate kernels. Substituting Eqs.~2! and ~3!
into Eq. ~1!, we obtain

nlk5@W̄l ,k21nl ,k212W̄lknlk#1@V̄l ,k21nl ,k212V̄lknlk#

1pldk1 , l 51,2, . . . ,L, ~4!

with the shorthand notationsW̄lk5(1<m<L(pm /wm)Wk
( l ;m)

and V̄lk5(1<m<L(k8@(2q/v)Vk,k8
( l ;m)nmk8#. From the recur-

sion formula~4! one then derives the following implicit so
lutions of the degree distributions:

nlk5
pl

W̄lk1V̄lk
)
j 51

k S 11
1

W̄l j 1V̄l j
D 21

, l 51,2, . . . ,L.

~5!

Equation~5! gives the universal solutions of the degree d
tributions of the multicomponent network systems with ar
trary sublinear or linear connection kernels. Hence, once
connection rate kernels are given, the explicit expression
the degree distributions can be directly derived from Eq.~5!.

Since the two-component GN model contains the gen
structure of the multicomponent network system, we lim
our investigations of the explicit solutions of Eq.~5! in the
two-component situation. Consider a two-component n
work with the general connection kernelsWk

(1;2)5W1k ,
Wk

(2;1)5W2k , andVkk8
(1;2)

5V1kV2k8 . Then Eq.~5! reduces to

n1k5
p1w2v1

p2v1W1k1qw2V1k
)
j 51

k S 11
w2v1

p2v1W1 j1qw2V1 j
D 21

,

n2k5
p2w1v2

p1v2W2k1qw1V2k
)
j 51

k S 11
w1v2

p1v2W2 j1qw1V2 j
D 21

,

~6!

wherev1 and v2 are two constants satisfying the equatio
v l5(kVlknlk , l 51,2. From Eq.~6! one can derive the ex
plicit solutions of the degree distributions for two-compone
GN systems.

We first consider a simple network system with the shift
linear connection ratesW1k5k1l1 , W2k5k1l2 , V1k5k
1l3, and V2k5k1l4. Here the four parameterslm (m
51,2,3,4) are constants larger than21 so as to ensure tha
all the corresponding connection rates are positive. The f
parameters are also called additional attractiveness~see, e.g.,
Ref. @19#!. In this network, one can easily find the relatio
v1511p1l3 , v2511p2l4 , w1511p2l2, and w251
1p1l1. By expanding Eq.~6! we then obtain the exact so
lutions

n1k5c1

G~k1b1!

G~k1a111!
, n2k5c2

G~k1b2!

G~k1a211!
, ~7!

where
1-2
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a15S 11
p2l1

11p1l1
1

ql3

11p1l3
D S p2

11p1l1
1

q

11p1l3
D 21

,

a25S 11
p1l2

11p2l2
1

ql4

11p2l4
D S p1

11p2l2
1

q

11p2l4
D 21

,

b15S p2l1

11p1l1
1

ql3

11p1l3
D S p2

11p1l1
1

q

11p1l3
D 21

,

b25S p1l2

11p2l2
1

ql4

11p2l4
D S p1

11p2l2
1

q

11p2l4
D 21

,

c15p1

G~21a1!

G~11b1! F11
p2~11l1!

11p1l1
1

q~11l3!

11p1l3
G21

,

and

c25p2

G~21a2!

G~11b2! F11
p1~11l2!

11p2l2
1

q~11l4!

11p2l4
G21

.

SinceG(k1b)/G(k1a);kb2a for largek, from Eq.~7! we
find the degree distributions in thek@1 region take the pure
power-law forms

n1k;k2n1, n2k;k2n2, ~8!

with the exponents

n1511S p2

11p1l1
1

q

11p1l3
D 21

,

n2511S p1

11p2l2
1

q

11p2l4
D 21

. ~9!

These indicate that the two-component network with lin
preferential connection kernels is indeed scale-free. We n
compare our predictions with the measurements for the
of human sexual contacts. The relevant exponents for
degree distributions aren52.5460.2 for females andn
52.3160.2 for males@4#. Equation~9! also shows that the
exponentsn1 and n2 are both larger than 2; moreover, on
can choose the above-mentioned seven parameters so
the exponents given by Eq.~9! have the same values as tho
for the real-world web of human sexual contacts. On
other hand, in another two-component network with asym
totically linear connection rate kernels, one can also tune
exponentsn1 and n2. As Krapivsky et al. did @12#, we as-
sume thatWlk→al`k andVlk→bl`k ( l 51,2) ask→` while
the others are arbitrary. Expanding Eq.~6! also yields the
power-law degree distributions~8! with the exponents

n1511
w2v1

p2v1a1`1qw2b1`
, n2511

w1v2

p1v2a2`1qw1b2`
.

~10!

The results show that the asymptotically linear connect
rate kernel may be another possible candidate for descri
the structure of the sexual contact web.
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The second example is a random GN model. The conn
tion probability of a new node attached to an old one and
creation probability of a new link between two old nodes a
both independent of the already existing link number of
target node. We then simply set all the connection rates e
to unit. So,w25v15p1 andw15v25p2. Equation~6! then
yields

n1k5p1
2~p21q!k21, n2k5p2

2~p11q!k21. ~11!

The results show that in the two-component random netw
system, the degree distributions take simple exponen
forms.

Finally, we investigate a network in which for either typ
of nodes one of the two connection ratesWlk and Vlk ( l
51,2) is sublinear while another is linear. We assumeW1k
5k1l1 , W2k5k1l2 , V1k5kg1, andV2k5kg2 (0<g1 ,g2
,1). From Eq.~6! we then obtain the exponential-correctio
power-law degree distributions

n1k;k2n18 exp~C1kg121!, n2k;k2n28 exp~C2kg221!,
~12!

where n18511(11p1l1)/p2 , n28511(11p2l2)/p1, and
C1 and C2 are two integration constants. Sinceg121,0
and g221,0, the exponential correction term
exp(C1k

g121) and exp(C2k
g221) will vanish as k→` and,

thus, the degree distributions asymptotically take the pow
law forms.

In summary, we have studied a general multicompon
growing network model which combines two processes:~i!
introducing a new node of one type and immediately co
necting it to an already existing node of any other type, a
~ii ! creating a new link between two old nodes of differe
types. By means of the rate equations, we obtained the
versal solutions of the degree distributions for the multico
ponent GN model with arbitrary linear or sublinear conne
tion rate kernels. We also analyzed in detail the connectiv
of the two-component GN systems. For a multicompon
network with all the connection rates being shifted or asym
totically linear, the degree distributions take the pure pow
law forms, while the random network with constant conne
tion rate kernels exhibits the exponential degr
distributions. An interesting feature of this multicompone
network model is that for the system in which some conn
tion rates are linear while the others sublinear, the deg
distribution may have an exponential-correction power-l
form and the exponential correction vanishes ask→`. On
the other hand, by choosing the parameters of the shifte
asymptotically linear kernels, we can construct a tw
component GN model which may exhibit the power-law d
gree distribution in accord with the measurements of the
man sexual contact web@4#. Thus, this multicomponent GN
model is expected to provide some predictions for the str
tural properties of some real-world complex systems.
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Åberg, Nature~London! 411, 907 ~2001!.

@5# R. Albert and A.-L. Baraba´si, Rev. Mod. Phys.74, 47 ~2002!.
@6# D.J. Watts and S.H. Strogatz, Nature~London! 393, 440

~1998!.
@7# A.-L. Barabási and R. Albert, Science286, 509 ~1999!.
@8# M.E.J. Newman, C. Moore, and D.J. Watts, Phys. Rev. L

84, 3201~2000!.
@9# M.E.J. Newman and D.J. Watts, Phys. Rev. E60, 7332~1999!;

C. Moore and M.E.J. Newman,ibid. 61, 5678~2000!; M.E.J.
Newman, I. Jensen, and R.M. Ziff,ibid. 65, 021904~2002!.

@10# A. Broder, R. Kumar, F. Maghoul, P. Raphavan, S. Raja
palan, R. Stata, A. Tomkins, and J. Wiener, Comput. Netw.33,
309 ~2000!.
03710
t.

-

@11# S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin, Ph
Rev. Lett. 85, 4633 ~2000!; S.N. Dorogovtsev and J.F.F
Mendes, Phys. Rev. E62, 1842~2000!.

@12# P.L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. Lett.85,
4629 ~2000!.

@13# P.L. Krapivsky, G.J. Rodgers, and S. Redner, Phys. Rev. L
86, 5401~2001!; P.L. Krapivsky and S. Redner, Phys. Rev.
63, 066123~2001!.

@14# X. Cheng, H. Wang, and Q. Ouyang, Phys. Rev. E65, 066115
~2002!.

@15# J.W. Kim, B. Hunt, and E. Ott, Phys. Rev. E66, 046115
~2002!.

@16# G.J. Lin, X. Cheng, and Q. Ouyang, Chin. Phys. Lett.20, 22
~2003!.

@17# S.H. Yook, H. Jeong, A.-L. Baraba´si, and Y. Tu, Phys. Rev.
Lett. 86, 5835~2001!.

@18# P.L. Krapivsky and S. Redner, J. Phys. A35, 9517~2002!.
@19# S.N. Dorogovtsev and J.F.F. Mendes, Phys. Rev. E63, 056125

~2001!.
1-4


